141 research outputs found

    Canonical quantization of non-local field equations

    Full text link
    We consistently quantize a class of relativistic non-local field equations characterized by a non-local kinetic term in the lagrangian. We solve the classical non-local equations of motion for a scalar field and evaluate the on-shell hamiltonian. The quantization is realized by imposing Heisenberg's equation which leads to the commutator algebra obeyed by the Fourier components of the field. We show that the field operator carries, in general, a reducible representation of the Poincare group. We also consider the Gupta-Bleuler quantization of a non-local gauge field and analyze the propagators and the physical states of the theory.Comment: 18 p., LaTe

    Vacuum state of the quantum string without anomalies in any number of dimensions

    Full text link
    We show that the anomalies of the Virasoro algebra are due to the asymmetric behavior of raising and lowering operators with respect to the ground state of the string. With the adoption of a symmetric vacuum we obtain a non-anomalous theory in any number of dimensions. In particular for D=4.Comment: 14 pages, LaTex, no figure

    Quantum Hall Smectics, Sliding Symmetry and the Renormalization Group

    Full text link
    In this paper we discuss the implication of the existence of a sliding symmetry, equivalent to the absence of a shear modulus, on the low-energy theory of the quantum hall smectic (QHS) state. We show, through renormalization group calculations, that such a symmetry causes the naive continuum approximation in the direction perpendicular to the stripes to break down through infrared divergent contributions originating from naively irrelevant operators. In particular, we show that the correct fixed point has the form of an array of sliding Luttinger liquids which is free from superficially "irrelevant operators". Similar considerations apply to all theories with sliding symmetries.Comment: 7 pages, 3 figure

    Non-perturbative approach to backscattering off a dynamical impurity in 1D Fermi systems

    Full text link
    We investigate the problem of backscattering off a time-dependent impurity in a one-dimensional electron gas. By combining the Schwinger-Keldysh method with an adiabatic approximation in order to deal with the corresponding out of equilibrium Dirac equation, we compute the total energy density (TED) of the system. We show how the free fermion TED is distorted by the backscattering amplitude and the geometry of the impurity.Comment: 5 pages, 2 figures, RevTex4. Appendix and some text added. Results and conclusions did not change. Version accepted for publication in Phys. Rev.

    Vacuum properties of a Non-Local Thirring-Like Model

    Get PDF
    We use path-integral methods to analyze the vacuum properties of a recently proposed extension of the Thirring model in which the interaction between fermionic currents is non-local. We calculate the exact ground state wave functional of the model for any bilocal potential, and also study its long-distance behavior. We show that the ground state wave functional has a general factored Jastrow form. We also find that it posess an interesting symmetry involving the interchange of density-density and current-current interactions.Comment: 25 pages, latex, no figure

    Topological and Universal Aspects of Bosonized Interacting Fermionic Systems in (2+1)d

    Full text link
    General results on the structure of the bosonization of fermionic systems in (2+1)(2+1)d are obtained. In particular, the universal character of the bosonized topological current is established and applied to generic fermionic current interactions. The final form of the bosonized action is shown to be given by the sum of two terms. The first one corresponds to the bosonization of the free fermionic action and turns out to be cast in the form of a pure Chern-Simons term, up to a suitable nonlinear field redefinition. We show that the second term, following from the bosonization of the interactions, can be obtained by simply replacing the fermionic current by the corresponding bosonized expression.Comment: 29 pages, RevTe

    On the Electromagnetic Response of Charged Bosons Coupled to a Chern-Simons Gauge Field: A Path Integral Approach

    Full text link
    We analyze the electromagnetic response of a system of charged bosons coupled to a Chern-Simons gauge field. Path integral techniques are used to obtain an effective action for the particle density of the system dressed with quantum fluctuations of the CS gauge field. From the action thus obtained we compute the U(1) current of the theory for an arbitrary electromagnetic external field. For the particular case of a homogeneous external magnetic field, we show that the quantization of the transverse conductivity is exact, even in the presence of an arbitrary impurity distribution. The relevance of edge states in this context is analyzed. The propagator of density fluctuations is computed, and an effective action for the matter density in the presence of a vortex excitation is suggested.Comment: LaTex file, 27 pages, no figure
    • …
    corecore